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I. Introduction

Extractivism simply defined is a produc-
tive process where natural resources are
removed from the land or mined for sale

in global markets. However, there is a lot more
to it; extractivism finds it roots in geopoliti-
cal, economic and social relations produced
through history and dating back to early Euro-
pean colonial expansion. Today, these relations
often go unquestioned in decisions around nat-
ural resource development, while global cor-
porations continue to exploit, plunder and de-
grade people and environments in which their
projects exist. This is evident in the increasing
number of environmental and natural resource
development related conflicts reported glob-
ally (www.ejatlas.org). With this being said,
there is also often a lot of community sup-
port for major extractive projects. While come
fight for resource companies to require their
consent before they are permitted to develop,
extractive corporations promise in return em-
ployment and economic benefits to the affected
communities. Alongside environmental and
sociocultural repercussions of cumulative re-
source development, this also leads to political
asymmetry within communities, often result-
ing in highly heated public debate and at times
even violence [1].

Research shows that extractive industries can
address growing opposition to their projects by
obtaining consent from affected communities

and groups [2]. This has manifested in several
regulator tools, social and economic impact
assessments, community consultations, and
guidelines around free, prior, and informed
consent, that attempt to give communities a
voice in how their neighbouring resources are
being managed. However, in theoretical cases
where consent could be obtained, the tools still
fraught in their failure to recognize the eco-
nomically coercive nature of extractive projects
when community livelihoods have been previ-
ously tied to employment income from projects
with finite production lives.

Antonio Gramsci, the 20th century political
philosopher linked macro-theories to the social
and economic understandings of individuals
and communities by describing ideological ex-
pansion as a function of both coercion and
consent [3]. the dominant political or social
contexts were said to be upheld through vio-
lence or economic force, and at the same time,
reinforced through the habits we form, the sto-
ries we internalize, and how these impact the
enactment of our social reality. In line with
Gramsci’s thought, we categorize any agree-
ment to develop a resource under economic
force (where development also impacts com-
munities ability to meet needs outside of mar-
kets) as coercion, not consent.

Through a mutliscalar network model we
explore the relational dimensions of cumula-
tive resources development and illustrate how
community consent can be impacted by po-
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tentially coercive economic relationships. The
model connects information flows at the com-
munity level with greater trends in the develop-
ment of economic relationships at the regional
level. Resource development can come in many
forms, with varying ownership models, regu-
latory structures, and motives. In this paper
we consider ’resource development’ as large
extractive projects, that are export oriented,
profit-motivated and corporate owned. In sec-
tion II we describe out methods and the set up
of the model. Section III reviews some novel
results. And, Section IV connects the model
behaviours with hypotheses form political ecol-
ogy literature. In all, we demonstrate how a
social network model can account for the im-
pacts of higher scale dynamics and historical
trends.

II. Methods

The multi-scalar network model contains both
micro and macro scales. The macro-scale
model is regional in scope, while the micro-
scale model describes mechanisms at the com-
munity decision-making scale. Weighted edges
between nodes in the macro graph can influ-
ence the micro-scale networks at each node in
the macro graph. This can be thought of as
additional weighted connections between only
the community nodes in the macro network.

i. Macro Network Details

The macro-scale represents a bipartite graph
of community and resources nodes. There are
two types of edges in this graph, the first are
the main bi-partite edges between resources
and community nodes. These edges signify
that connected communities have authority
over a resources. The second type of edges
are weighted connections between community
nodes. These edges are meant to represent
how connected two communities are in terms
of how much different communities should
influence each other. We will introduce the
remaining macro network details and relevant
parameters next.

The outer bi-partite network of communities
and edges can be generated either randomly,
according to three parameters: the number of
communities, the number of resources, and the
probability that any given resource and com-
munity will be linked, or this outer network
can be initialized as a bi-partite chain. The bi-
partite chain is generated such that an equal
number of resource and community nodes are
connected with edges to make a minimal chain.
In the case that more resource nodes or more
community nodes is specified, the additional
nodes will connect to an existing part of this
chain randomly in one place. Similar to the
randomly generated outer structure, we also
introduce a parameter which we call p extra
which allows for a percentage of possible ad-
ditional edges to be added randomly (where
all edges satisfy the bi-partite constraints). By
tuning this p extra parameters, we can make
the outer network close to the random network
if desired or fully bi-partite.

Figure 1: Network with low p extra value (top) compared
with network with high p extra value (bottom).

The weighted connections between commu-
nity nodes represent a fully connected graph
with the exception of the case where no path
exists between two community nodes in the
macro graph; in this case, that edge will not
exist in this graph. The weights of the edges
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are calculated based on the distance between
community nodes in the bipartite projection
of the macro graph. Each weighted edge be-
tween community a and b, Eab is calculated as:
Eab = ρds

ab. Where ρ is drawn from a random
uniform distribution between 0 and 1, dab the
distance between two nodes in the bipartite
projection of the macro network (as projected
onto the community nodes), and parameter s
is a user-defined parameter which represents
the "Distance Scale." The distance scale being
a measure of how highly physical distance be-
tween two community nodes should weight the
connection between them, where s = 0 would
ignore it fully, and higher values would place
more emphasis on assigning higher weights to
nodes which are closer in the projected graph.

Every round non-developed resources are set
to ’developed’ if the majority of neighboring
communities are in favor of developing. There
are two optional parameters that can make
this process more flexible. The first controls
the threshold of neighboring communities that
need to be in favor of developing for the re-
source to be developed (this is fixed at .5 in the
base version). The other is an optional offset
of the micro-graph voter model round and the
macro graph resource voting rounds. The base
has resources voted on after each completed
round of the micro-scale voter model. This
can be changed to vote on the resources in the
macro scale every n rounds (1 is the default) of
the micro-scale.

The state of each community node, either yes
or no, is determined after each time-step from
that community node’s associated micro-scale
network. That said, there also exists an overrid-
ing condition where communities neighboring
at least one developed resource are in favor
of developing. Therefore, if a resource is de-
veloped, all neighboring communities (i.e., the
rest of the communities which voted no) au-
tomatically switch to pro-development. These
two processes control nodes in the macro-scale
network switching state.

At the start of each time step, the weighted
edges between community nodes are used
to calculate for each community an adjusted

spread rate at each time-step. This adjusted
spread is calculated by first determining the
weighted percentage of neighbors a commu-
nity node has that are already leaning towards
developing (e.g., if a node has two weighted
edges, one with weight 1 to a node in state
"yes" and one with weight 2 to a node in state
"no", the weighted fraction would be 1/3). The
adjusted rate is then computed as the base
spreading rate plus an "additional spread"
term, which is computed as (1 - the base
spreading rate) multiplied by the weighted frac-
tion of "yes" neighbors and then scaled further
by an "outside influence" parameter (between
0-1).

ii. Micro Network Details

The micro-scale represents a network at each
community node. Each network is representa-
tive of that community. Within each network
there are binary edges generated by a small
world network designed to represent connec-
tions between individuals in the community.
Communities interact with the macro network
based on the "adjusted spread rate" of each
community as well as in interactions where a
neighboring resource is developed, thus forc-
ing a community to be pro development. The
details for this network are discussed next.

This network is generated as a random small-
world network with parameters controlling the
number of nodes, the number of neighbors
each node is originally connected to (in the
small world ring topology), and then lastly,
the probability that each edge is randomly re-
wired. These parameters are fixed across each
community’s micro-scale network (i.e., if the
number of nodes is 100, all micro-scale net-
works will have 100 nodes), but each network
is randomly generated according to a different
random seed. We chose a small world network
as it might roughly mimic a real communities
network of social interactions.

Each node is an individual, and the connec-
tions represent social interactions. Individu-
als have two states: in favor of development
-or- not. Nodes within this network can only
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be switched to pro-development, and once
switched, cannot return to being opposed to
development. This assumption where individ-
uals once pro-development they cannot change
back is certainly a simplification from reality.
We decided to introduce this mechanic as a
way of simplifying the spreading process.

We introduce a parameter to control the
number of pro-development nodes originally
in the network. We typically set this parameter
to .1, representing that to start a random 10
percent of nodes across different micro-scale
networks start "pro-development."

At every time-step, each node currently in
the no state has a chance of changing to the yes
state with a probability determined by two fac-
tors, 1. the percentage of nodes that node has
which are already in the "yes" state, 2. the com-
munities current spread rate, which is deter-
mined by a combination of an initially assigned
base spread rate, and the weighted influence
of that communities connection to other pro-
development communities in the "third net-
work". This influence can be further deter-
mined by another parameter, which we call the
"Outside Influence", where a value of 0, would
fix the spread rate at the originally assigned
base spread rate, and a value of 1, on the other
extreme, would apply the highest weighting
possible to a community’s weighted edges to
positive nodes in calculating that community’s
adjusted spread rate.

Every round, one step of the voter model is
run. If the majority of nodes are in favor of
development, the community as a whole is set
to ’in favor’ within the macro-scale. In this way
each micro network can influence the macro
network.

III. Results

The default parameters in which results were
generated, unless otherwise noted, are as fol-
lows:

• The outer macro-network is generated as
a bi-partite chain with 100 resource nodes
and 100 community nodes. Additionally,

Figure 2: Overview of the macro and micro scales of the
model.

a "p extra" value of .001 is set, which corre-
sponds to adding an additional 10 random
connections to this network.

• The micro-networks for each community
nodes were generated as Watts-Strogatz
random small-world network 100 nodes,
each node originally connected to 3 neigh-
bors and a chance of .2 for any edge to
re-wire.

• There is a random 10 percent of nodes in
each micro-scale network set to be origi-
nally pro-development.

• Fixed thresholds of .5 for both the percent
of nodes needed to be pro-development
in a micro-scale for that node in the
macro-scale network to switch to pro-
development and also for the threshold of
communities bordering a resource node,
for that resource node to be developed.

• A "distance scale" of 2, and an "outside
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influence" scale value of .15
• A base spreading rate/chance of .1.
• Voting every 1 round for if a resource is

developed.
• All resources begin as not developed.

All simulations show results as averaged
over 128 random repetitions.

We first examine in Figures 3 and 4, how
the choice of the outer network as fully ran-
domly generated versus as initially a bi-partite
chain with some additional edges, influences
the rate in which our simulation becomes fully
developed. By comparing the two initializa-
tions under a range of different spread rates,
we see that the bi-partite structure serves gener-
ally to slow down development. Investigating
the role of network density further in Figure
4, we find that by adjusting the extra density
of the bi-partite structure, we can bridge the
gap between the fully bi-partite outer structure
and random network. Essentially at higher val-
ues of extra edges, the slowing factor that the
bi-partite structure allows at lower densities is
dampened and behaves more similarly to the
randomly generated network.

Across both networks, Figure 3 shows that
the the rate of idea spread through a com-
munity is positively correlated with the rate
of resource development. The communities
where people adopt new ideas slowly exploited
their resources slowly since the default opin-
ion for the majority of citizens was set as anti-
development. This rate is roughly analogous
to the base contagiousness of a disease in an SI
model. The degree to which changing this pa-
rameter can influence the rate of development
is of interest. Note for example, how the a base
spread rate of .2 and .3 are far closer to each
other in terms of the time it takes to reach peak
development across both the top and bottom
figures relative to a base spread rate of .1. This
seems to indicate that once a base spread rate is
sufficiently high, it will converge towards full
development, constrained only by the topology
of the different networks.

Next, we investigate how the number of
community nodes relative to the number of
resources nodes in the macro network can in-

Figure 3: This figure shows a comparison between chang-
ing the base spreading rate on a random outer
network (top) versus changing the base spread-
ing rate on a bi-partite network (bottom). Note
that the timescale for the bottom plot is twice
as long (up to 100) than then the top figure
(up to 50).

fluence development. Figure 5 shows simula-
tions where the number of community nodes
ranges from 50 to 200, relative to 100 resource
nodes. There is very little difference between
50 and 100 community nodes, however, when
the number of communities increases to 125,
and then to 200, full development is reached
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Figure 4: This figure shows another comparison between
a random outer/macro network (top figure) and
a bi-partite macro network (bottom figure). It
investigates how changing the density of each
network can influence the rate of development.
In both cases, the respective density, or prob-
ability that a random edge is added is plotted
at different values. Note that the degree to
which these densities are manipulated are not
necessarily equivalent with each other.

within a shorter time-span. This is likely due
to the random wiring of additional community
nodes to the original bipartite chain (length=
50), meaning that some resource nodes were

Figure 5: This figure shows how adding extra commu-
nities, relative to the fixed number of 100 re-
source nodes, can effect rate of development.

connected to multiple communities. This be-
havior is perhaps less expected. Intuitively, we
might imagine that the more neighbors a re-
source has should make it be harder for that
resource to flip to being developed, as it must
gain consent from more neighbors. However,
because the voting threshold is set at 50 per-
cent, a resource having exactly 2 connected
community nodes, needs both communities to
vote ’yes’ to development. This is not the case
when there are three neighbors, in this case
only 2/3’s of the resources neighbors need to
flip, versus one hundred percent in the previ-
ous case. As we increase the density of the
bi-partite network, the model behaves more
closely to a random network.

In Figure 6 we attempt to determine the in-
fluence of two parameters in the system, on the
top, the "Outside Influence" parameter, and on
the bottom, the "Distance Scale" parameter. In
theory, we designed these parameters in order
to control how much a communities internal
micro network spread should be influenced
by that communities connections in the macro
network, and how much distance in the macro
network should influence these macro graph
connections. What this series of simulations
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Figure 6: This figure examines the influence of two pa-
rameters, first the upper graph looks at how
changing the scalar term "outside influence"
can either increase or decrease the rate in which
development of the full system occurs. The bot-
tom graph examines the parameter "distance
scale" with a fixed maximum "outside influ-
ence" of 1.

shows us is that the outside influence parame-
ter can influence the system a relatively large
amount when compared to the distance scal-
ing. In particular, when we remove all outside
influence, we observe the slowest rate of de-
velopment, versus when we have the outside

Figure 7: This figure shows how adjusting the percent
of communities which start at developed, from
the previous default of none, can speed the rate
in which initial development occurs.

influence set to 1, we see the fastest rate of
development. This figure directly relays utility
about some of our modeling choices, indicating
that the rate of development, and the internal
decision structure of communities, are sensi-
tive to the outside influence parameter, but less
so to the distance scale parameter.

In Figures 7, 8 and 9, we delve into the ques-
tion of how future development can be influ-
enced by existing development. Figure 7 and
the top rows of Figure 8 and 9 show the same
simulation, where we model starting at no re-
sources developed, 10 percent of resources de-
veloped and 30 percent of resources developed
as initial conditions. The base behavior of start-
ing with more resources developed is that the
speed of development increases. What is in-
teresting about Figure 7, modeling a bi-partite
outer network, is that we observe the time in
which all resources are developed stays about
the same across all three levels of starting devel-
opment. So while the rate in which around 90
percent of resources become developed is quite
dependant on the starting percent of resources
developed, the last few resources, which are
maybe well isolated, still take on average just
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Figure 8: Similar to figure 7, this figure investigates
how the choice of the percent of communities
which start as developed are influenced further
by the extra density of the outer macro bi-
partite network. Note the top row of this figure
has the exact same curves as Figure 5, where
moving left to right, the starting percent of
developed communities moves higher. Moving
down though represents introducing a higher
density to the macro network.

as long to become developed. However, this
behavior doesn’t necessarily hold when we
change the outer network or rate of outside
influence.

When initial conditions are set to 10 per-
cent developed, we see a slight jump right at
the start, and a more dramatic similar spike
at the start when starting with 30 percent of
resources developed (jumping up to 40 per-
cent developed after a few timesteps). When a
resource is developed, all surrounding commu-
nities become pro-development (demonstrate-
ing an economic relationship). Due to this, an
early fraction of developed resources will trig-
ger a chain reaction. As we show in Figure
8, the size of this reaction, is directly related
to the density of the macro network. In Fig-
ure 8, if we follow the middle column, where
the starting developed resources are fixed at
10 percent, we can see that by increasing the

Figure 9: Similar to figure 8, this figure investigates how
the choice of the percent of communities in
which start as developed are influenced when
interacting with adjusting the outside influ-
ence scaling factor. Moving down represents
increasing the weight of the outside influence.

Figure 10: This figure examines how adjusting how of-
ten voting over a resource can occur can slow
development, but also lead to more drastic
spikes of development.

density the slope and peak of the early jump
dramatically increases (Middle figure jumping
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to 20 percent developed after 20 timesteps, and
bottom middle jumping to 80 percent devel-
oped). This behavior is even more dramatic
when initial conditions are set at 30 percent
developed resources (shown on the far right
column of Figure 8). In this case, we see that
the early jump is initially from 30 to 40 percent,
then increasing the density it jumps from 30 to
around 85 percent and increasing the density
once more, jumps after only a few timesteps to
fully developed. The model displays a positive
feedback loop behaviour in response to early
resource development.

In Figure 9 we examine how changing the
Outside Influence parameter, instead of the
density of the network, can interact with the
starting percent of developed resources. In this
case, we see that the behavior of the system is
almost identical to what we observed in Figure
7, with the exception of changes to steepness
or slope of how quickly development occurs.
Essentially, we see that development will start
to kick off at roughly the same time-step, but
will more quickly reach a state of being fully
developed. The hold out behavior we saw in
Figure 7 too, is washed away by turning up the
outside influence parameter.

Lastly, we examine how changing the rate
of how often voting for a resource can occur
influences development. Figure 10 shows how
adopting more realistic time-scales for how
often voting over a resource occurs can de-
lay the spread of developed resources. This
makes intuitive sense given the mechanisms
we have built into the model where once a
resource is developed, its neighboring commu-
nities that were in the minority (voted "no",
but the resource was still developed) are in-
stantly changed to developed. Therefore, by
slowing the "spreading" of how often votes
over resources can occur, the rate at which
resources are developed will noticeably slow.
One can imagine that the structure of the net-
work will also affect how much changing this
rate will serve to slow this development, where
in networks with resources connected to larger
numbers of communities, the benefit from ex-
tending the time between votes will diminish.

IV. Discussion

The model suggests that regions with greater
initial resource development, assumed here to
mean a greater livelihood dependence on in-
come and economic benefits from industry, are
more likely to come to consensus in favor of
development and exhaust all resource develop-
ment opportunities within a shorter time frame.
The model demonstrates a positive feedback
towards development once an early base satu-
ration is reached. This supports the hypothe-
sis that economic relationships with industry,
whether a community consents to them or not,
leads to a more favourable outcome for those
wishing to develop additional resources. This
points toward an important consideration for
regions and communities intending to man-
age cumulative resource developments with
intentions towards ethical and sustainable de-
velopment.

The behaviour of the outside influence pa-
rameter indicated a potential positive relation-
ship between remote communities favor to-
wards development and their degree of con-
nectedness with other pro-development com-
munities. One might imagine that a remote
community without previous influence from
industry might be less inclined to invite major
resource development projects, and inversely,
the potential for a highly connected commu-
nity to sway in favour of resource development
in the face of economic benefits and access to
modern material comforts. Conjecture is be-
yond the scope of this paper, however, there
is potential for the model to further the de-
velopment of hypotheses in regard to remote
communities and their relationships with ex-
tractivism.

The model results support case study find-
ings in the nexus of extractivism and com-
munity development. Major resource devel-
opments are capable of altering land-human
relationships and severing people from alter-
native economies. This has been seen in the
US Appalachia with communities transitioning
from subsistence agriculture to coal mining [4].
And similarly in the Canadian Arctic, where
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the impacts of industrial development: includ-
ing relocation to work camps, restrictive work
schedules, and a reorientation of socially im-
portant roles within communities, have led to
the reduced consumption of traditional foods,
the break-up of food sharing networks, the
loss of control over traditional lands and the
weakening of supporting cultural institutions
[5]. These are only two examples of many,
where environmental and socioeconomic ef-
fects of major resource developments reduced
the ability for communities to practice the var-
ious other ways of meeting needs that exist
outside of markets, developing a greater de-
pendence on monetary incomes. Since extrac-
tive resources are often linked to boom and
bust markets and have limited productive lifes-
pans, there is a perceived need to continuously
develop more and more in order to maintain
household incomes [6].

Our model is unable to broadly confirm
these findings, however, there is a lot of po-
tential for models like this to support social sci-
ence research in explaining different possible
mechanisms and illustrating theoretical con-
cepts. The model presented here contributes
an important piece to the study of social phe-
nomenon using network models by demon-
strating an approach that is able to take into
account the cumulative effects of resource de-
velopment at a regional scale and asses their
potential impact on decision making at the
community level.

References

[1] Willow, A. (2016) Indigenous ExtrAC-
TIVISM in Boreal Canada: Colonial
Legacies, Contemporary Struggles and
Sovereign Futures. Humanities, 5:3–55.

[2] Laplante, L. J., Spears, S. (2008) Out of
the Conflict Zone: The Case for Commu-
nity Consent Processes in the Extractive
Sector. Yale Human Rights Development
Law Journal, 11:1–69-116.

[3] Gramsci, Antonio, Quintin Hoare, and
Geoffrey Nowell-Smith (1972) Selections

from the Prison Notebooks of Antonio
Gramsci. New York: International Pub-
lishers

[4] Joseph Aloi, M. (2018) Coal feeds my
family: Subsistence, energy, and indus-
try in Central Appalachia. Relations, 6(2),
173–286.

[5] Southcott, C., Natcher, D. (2018) Extrac-
tive industries and Indigenous subsistence
economies: a complex and unresolved re-
lationship. Canadian Journal of Development
Studies, 39(1), 137–154.

[6] Huskey, L., Morehouse, T. A. (1992) De-
velopment in Remote Regions: What Do
We Know? ARCTIC (Vol. 45).

10


	Introduction
	Methods
	Macro Network Details
	Micro Network Details

	Results
	Discussion

