
AUTOMATIC DEEP LEARNING BASED CERVICAL SPINAL FRACTURE DIAGNOSIS

Sage Hahn? James Allison† Richard Watts† Safwan Wshah?

? University of Vermont, Complex Systems Center, Burlington, Vermont 05401, USA
† University of Vermont, Department of Radiology, Burlington, Vermont 05401, USA

ABSTRACT

Fractures of the spine are potentially serious injuries that
are associated with significant morbidity and mortality. The
second cervical (C2) vertebrae, in particular, has a unique
morphology and associated fracture patterns. In this paper,
we propose a deep learning based approach for the automatic
diagnosis of C2 fractures based on Computed Tomography
(CT) volumes. The proposed approach makes use of a two
separate 3-dimensional convolutional neural networks (CNN)
to first localize the C2 vertebra, and secondly to predict the
presence of a fracture. We evaluate and train the stages of
our pipeline, along with a comparative 2D CNN approach, on
a dataset of CT scans collected from 465 patients. The pro-
posed method shows promising experimental results, obtain-
ing a cross-validated area-under-the-curve of .88 for fracture
diagnosis.

Index Terms— C2 fracture, Dens fracture, Deep learn-
ing, Cervical spine, 3D convolutional neural network

1. INTRODUCTION

Spinal injury is a major source of morbidity and mortality in
the United States. Approximately 7800 new cases of spinal
cord injury occur each year [1]. Detection of fracture is es-
sential for the appropriate care of trauma patients who have
either suffered or are at risk of developing spinal cord in-
jury as a consequence of trauma. Additionally, certain frac-
ture patterns in the cervical region are associated with other
pathology such as blunt cerebrovascular injury and may be the
impetus for additional vascular evaluation and treatment [2].
Detection of spinal fractures reflects an opportunity for the
application of machine learning in radiographic imaging. Ini-
tially, a functional system could “pre-read” examinations and
alert clinicians to the presence of fractures which require im-
mediate attention. Within the realm of radiology, this could be
helpful to triage patients with injuries for more rapid scan in-
terpretation. Ultimately, one may envision a fully automated
system for the interpretation of spinal CT imaging.

As a first step towards developing a comprehensive tool
for assessment of spinal fractures on CT images, we focused
on developing a system that could first reliably identify the

C2 cervical vertebrae and secondly determine the presence of
fractures involving the odontoid process.

As far as we can determine there has been no previous
work done specifically on the automated detection of C2
fractures. However, there is a large body of work in closely
related areas including spinal fracture diagnosis, general frac-
ture diagnosis, and general disease diagnosis. Of particular
interest within the scope of automated spinal fracture detec-
tion is work done by Roth et al. [3] on the use of ConvNets
in a 2.5D approach. They obtain an an area-under-the-curve
(AUC) of 0.857 on the detection of posterior-element frac-
tures from spinal CT’s. A number of other 2D approaches
exist on the task of fracture detection within 2D images
obtained from plain radiographs and other similar modali-
ties. Approaches on this arguably less complex data tend
to yield more impressive results, with an AUC of .954 on
detecting wrist fractures [4] and 95.5% accuracy on detecting
intertrochanteric hip fractures [5] among others. In general,
due to its vastly greater size, working with 3D volumes tends
to be more difficult and memory intensive for diagnostic deep
learning approaches. Despite the increased computational
difficulty, a number of approaches exist that make use of
three dimensional convolutional neural networks (3D CNNs)
in order to predict directly from a 3D representation of the
data. Examples include work done by Payan et al. [6] with
3D CNNs on predicting Alzheimer’s disease and by Korolev
et al [7] on brain MRI classification.

On the other hand, our initial sub problem of vertebra
localization within a large 3D medical volume has received
more attention. Approaches to this task tend to vary greatly,
and include a range of older machine learning based meth-
ods [8] in addition to more recent deep learning inspired
approaches. Yang et al. [9] offers a deep learning approach
to the automated labelling of vertebrae within CT volumes
over range of different pathologies. Recent efforts have
also yielded results on more general anatomical localization
through two pass or cascaded methods, for example Zheng
et al. [10] makes use of an initial shallow candidate detector
followed by a deeper more accurate classification network,
ultimately obtaining a mean error of 2.64mm on the task of
carotid artery bifurcation detection.

Within this paper we explore a new approach towards re-
gion of interest selection, building on existing approaches for



both localization and segmentation. Our method presented
below evaluates the use of 3D segmentation networks trained
on imperfect, and importantly easy to create, segmentation
labels as a tool for anatomical localization. We additionally
contribute to the growing understanding surrounding the use
of deep 3D CNNs on large medical volumes, evaluating their
performance on the task of C2 fracture diagnosis.

2. METHODS

In this section we outline the details of the proposed deep
learning pipeline for automatic C2 fracture diagnosis.

2.1. Dataset Details and Labels

Our dataset was gathered from the University of Vermont
Medical Center, with an IRB waiver of consent, for the pur-
pose of this study. The full dataset consists of 465 cases in
total, where all 62 scans with C2 fractures and 403 without
were reviewed by a board certified radiologist in addition to
the original case report for the presence of a C2 fracture. At
this stage of the study, we decided to ignore cases with signifi-
cant metal artifacts close to the C2 vertebra. Additionally, the
radiologist provided for each of the fracture positive cases a
range of slices within the sagittal plane reconstruction where
evidence of the fracture is visible for use in the 2D diagnos-
tic network. The dimensionality of the gathered CT dataset
varies greatly in terms of amount of 512x512 axial slices.
Typically scans contain between 300-700 slices, with the C2
vertebra tending to encompass at most a 128x128x128 region
within this larger 300-700x512x512 volume. A rough man-
ual segmentation was further preformed on down-sampled
128x128x128 representations of 128 scans (an even mix of
fracture and non-fracture) for the purpose of localization.
Specifically, the area segmented is from the apex of the Dens
down to roughly the border between the Dens and the body
of the C2 vertebra, as can be seen in more detail in Fig. 1.

2.2. Localization

In order to achieve localization down to the 128x128x128 re-
gion of interest we make use of an established 3D convolu-
tional network designed for segmentation. The novelty of our
approach lies in the use of rough segmentation as tool for lo-
calization. CT volumes are first re-sampled from their orig-
inal input size down to 128x128x128, a necessary step due
to memory constraints on input size for the network. The net-
work architecture employed at this stage is heavily inspired by
the 3D U-Net approach [11], additionally employing residual
weights and deep supervision [12]. The network is trained,
with a batch size of one along with basic training augmenta-
tion in the form of 3D permutations, to segment the portion
of the Dens described earlier and as seen in Fig 1.

Fig. 1. Sample segmentations of the Dens on a sample cer-
vical spine CT. On the left, the sagittal view, on the right a
coronal view.

Given a ground truth or predicted segmentation, a ba-
sic post processing scheme is employed in choosing the fi-
nal 128x128x128 crop. First, the predicted segmentation is
re-scaled to fit the original volume. The volume is then pro-
cessed in all two dimensional reconstructions (axial, coronal
and sagittal) removing predicted segmentations with less than
9 pixels on a given slice as a coarse method for outlier re-
moval. Next, a smaller 3D region of interest is calculated to
include all of the remaining segmented output, and lastly this
region is expanded in all dimensions (increasing the size of
the crop) to ultimately represent a 128x128x128 region of the
original volume. In degenerative cases where the initial out-
lier threshold fails to reduce all dimensions of the predicted
volume to 128 or less, the threshold is raised by increments
of 1 and continually re-evaluated until sufficiently reduced. It
should be noted that the ratios for volume expansion are not
equal, but were instead chosen based on experimentation. In
general though, most ratios examined along with choices of
pixel outlier threshold tended to capture the full C2 vertebra,
the presence of hand tuned parameters were added only to
more accurately center the vertebra within the region interest
as well as to help capture outlier cases.

2.3. 3D Diagnosis Network

The 3D networks used at this stage are heavily influenced by
the Res-Net architectures [13], in particular we use a ‘vanilla’
3D version which has been used for brain MRI classification
[7], among other medical and non-medical tasks such as 3D
action recognition. A number of different configurations for
a 3D Res-Net are possible, these include in general differ-
ent depths from shallower networks with 18 or 50 layers, to
deeper and therefore more memory intensive networks with
101 or 151 layers. We sought to evaluate the effect of dif-
ferent depths on performance, and therefore made use of a
number of different configurations during testing. Raw input
at this stage comes in the form of a 128x128x128 crop on the
original scan, which we either use as is or down-sample to
96x96x96 or 64x64x64. Networks are trained with a binary



cross entropy loss function and the Adam optimizer in order
to predict a probability between 0 (no fracture) and 1 (frac-
ture) for each sample. All network configurations are addi-
tionally trained through use of a technique known as snapshot
ensembles [14], where a cyclic learning rate is employed and
‘snapshots’ of the networks weights are taken over a fixed
number of total epochs. In our case we took between 2-5
snapshots over typically 100 epochs, corresponding to a saved
set of network weights after every 20 epochs, ultimately tak-
ing the average score from each set of weights during testing.
This technique is a useful tool in relieving noise from various
hyper-parameters, especially when working with 3D CNNs
which tend to be very sensitive to small parameters changes,
thus reducing overall time needed to fine tune performance.

2.4. 2D Diagnosis Network

In comparison with the 3D approach, our 2D network receives
as input 128 sagittal slices with dimensions 128x128. Each
individual slice here has a corresponding label as to if a frac-
ture is visible on that slice individually, and likewise the net-
work is trained to make slice by slice predictions in that re-
gard. We make use of a slightly modified ResNet-50 [13]
architecture as the underlying prediction network. Likewise,
the same snapshot ensemble scheme, optimizer and loss func-
tion as discussed with regard to the 3D diagnosis network are
used. Importantly, the network outputs 128 individual pre-
dictions from each scan which must be combined in order to
make an overarching prediction on the scan itself. This is
done simply by taking the maximum predicted value from the
series of slices, and associating that value with the scan itself.

2.5. Implementation Details

All work presented was implemented in python, making ex-
tensive use of the Keras library [15]. Further all training and
experimental results were obtained on a desktop with a Nvidia
GeForce GTX 1080 graphics card.

3. EXPERIMENTAL RESULTS

In order to evaluate our full localization pipeline as described
in Section 2.2, we trained a model on 124 labelled scans,
using these scans to additionally fine tune the post processing
parameters. The remaining 341 unlabelled scans were then
utilized as our test set for evaluating overall performance. As
these scans are unlabelled, the outputted final 128x128x128
predictions were evaluated by a human to validate if the C2
vertebra was accurately captured within the predicted region
of interest. The following methodology yielded only one
complete miss out of all 341 evaluated scans, along with two
additional partial misses where at least 50% of the body of
the C2 vertebra was still captured. While it can be difficult to
determine exactly why the full miss occurred, we suspect it

is related to metal artifacts present in the lower C-spine. That
being said, our presented methodology remained robust over
the remaining 338 scans which notably contain a broad range
of different pathologies, artifacts and resolutions.

During our evaluation of the diagnosis networks we alter-
natively made use of stratified 5-fold cross validation (CV), as
we have access to only 62 positive fracture cases. The dataset
used for training and testing over 5-fold CV at this stage is
comprised of all 62 positive cases and a random sample of 62
negative cases. Over the course of a large number of experi-
mental runs we evaluated the performance of different models
through use of the following metrics: Area Under the Re-
ceiver Operating Characteristic Curve (ROC AUC), Average
Precision (AP) defined as the weighted mean of precisions
achieved at each threshold of the precision-recall curve, and
the highest F1 score achieved over all thresholds (F1).

While we chose to focus on optimizing model perfor-
mance and parameters for a 3D network approach, it nonethe-
less bears a brief comparison with its 2D counterpart. To this
end, we presents experimental results at the bottom of Table
1 for the 2D Diagnosis network trained and evaluated on the
dataset described above. Table 1 further shows the 3D CNN
network parameters used to generate our most successful
results over 5 fold CV. Our best models converge around a
ROC AUC score of .88, notably achieved with variability sur-
rounding most introduced parameters. We found additionally
that on the fly training data augmentation in the form of slight
random 3D scaling improved accuracy over all models. On
the other hand, we were unable to improve results through use
of data augmentation techniques during testing, a technique
which in some cases has been shown to improve accuracy.

4. CONCLUSIONS AND DISCUSSION

We have introduced a robust technique for the localization of
the C2 vertebra from rough easy to generate labels, as well
as a subsequent predictive model for fracture diagnosis. It of-
fers accurate region of interest localization over a huge range
of different anatomies, achieving an accuracy of 99+% over
341 scans. We further achieve a ROC AUC of 88% and AP
of 91% over 5-fold cross validation on the task of C2 frac-
ture diagnosis through use of 3D CNNs. Likewise, we were
able to achieve comparable performance across a number of
similar 3D and 2D CNN approaches, regardless of additional
time spent fine-tuning the 3D network, which suggests we
might be able to improve 2D CNN results further. We also
believe that additional fracture cases will prove essential to-
wards training a more accurate pipeline. In future work we
plan to expand our dataset, both in terms of size and loca-
tion of fracture within the C-Spine, our eventual goal being a
system capable of scanning a full CT volume for fractures.



Layers Input Size Snapshots Epochs Batch Size ROC AUC AP F1
3D-101 64x64x64 5 100 6 .88 ± .03 .91 ± .05 .85 ± .07
3D-18 64x64x64 3 60 4 .88 ± .07 .90 ± .07 .87 ± .06
3D-18 64x64x64 5 100 8 .88 ± .06 .89 ± .08 .85 ± .06

3D-151 64x64x64 5 100 4 .88 ± .06 .88 ± .09 .84 ± .04
3D-50 64x64x64 6 120 5 .88 ± .07 .90 ± .07 .85 ± .07

3D-101 96x96x96 5 100 3 .87 ± .02 .89 ± .02 .82 ± .02
2D-50 128x128 5 100 64 .89 ± .07 .88 ± .10 .85 ± .05
2D-50 128x128 3 60 32 .84 ± .04 .85 ± .07 .82 ± .03

Table 1. Best 2D and 3D network results from various models and hyper-parameters evaluated over 5-Fold CV.
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