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1 Introduction
There exists within computational neuroscience,
among a number of other fields, a significant
ideological gap between descriptive statistics and
machine learning or classification based approaches.
The general trade off in approaching problems of
interest within a machine learning framework, i.e.,
complicated classifiers, is a boost to predictive
performance at the cost of interpretability. On the
other hand, the more traditional descriptive statistic
approaches concern themselves for the most part with
attempting to explain what is going on, and therefore
by design yield only results under a certain threshold
of complexity. Within the scope of this work I attempt
to further bridge the gap between complexity and
explain-ability via the construction of a feature
importance network.

In order to properly introduce the the construction
and analysis of the proposed feature importance
network, it is important to first introduce the problem
of interest. This work is concerned with the use of
machine learning methods in order to distinguish
between alcohol dependent and control human
subjects from structural MRI acquired from the
Enhancing Neuro-Imaging Genetics Through
Meta-Analysis (ENIGMA) Addiction Working Group
(Mackey et al., 2016). A machine learning based
evolutionary search in then employed on regions of
interest extracted from each subject. While these
techniques will be briefly explained below, the scope
of the paper is primarily concerned with a network
based analysis approach which receives as input
results from the evolutionary search. I further attempt
to show the merit of modeling feature importance
within a network in comparison to a more naive
approach. There are two broader questions of which
modelling feature importance could potentially help
with, one of simply better understanding the

dynamics behind feature importance, and second in
choosing a set of features for optimal classifier
performance.

2 Methods
The provided dataset from the ENIGMA Addiction
group contains a complicated mix of data from over
20 unique sites whose distribution of alcoholics vary
drastically i.e, some sites contain only alcoholics and
some only controls, only five contain both. In total
there are 1652 subjects with full brain data, of which
692 have been diagnosed alcohol dependent. I make
use of 150 Freesurfer derived Desikan ROI
measurements from each subject (bilateral cortical
thickness and surface area and sub-cortical volume)
as input to the evolutionary search based classifier
(Desikan et al., 2006).

From a high level the evolutionary search is
designed to identify and test different subsets of
features (brain regions) as input to a machine learning
binary classifier. While any back-end classifier can be
used, within the scope of this project I made use of a
cross validated logistic regression with l2
normalization implemented in the python library
scikit-learn (Pedregosa et al., 2011). Specifically, and
due to the complex multi-site nature of the data, at
each individual round of the evolutionary search a
score is assigned to a given set of features as the
average receiver under the characteristic operator
curve (ROC AUC) score from five nested site left out
evaluation schemes. The nested left out evaluation
scheme works as follows: The logistic regression
classifier is trained and evaluated (using 3-fold CV
for regularization selection) on all available subjects,
with the exception of subjects from the left out site,
and with access to only the subset of features being
evaluated. The trained classifier is then tested on the
remaining subjects from the left out site yielding an
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ROC AUC for that set of features and that site. This
scheme is repeated five times across all available with
sites with both alcoholics and controls available,
producing an average ROC AUC.

The previous paragraph describes the behavior of
the evolutionary search at the level of an individual
set of features being evaluated one time. More
broadly, a population of initially randomly generated
subsets of 3-5 features are created and each individual
then evaluated. Next, a Pareto tournament is run
where two individuals are randomly compared. If one
individual dominates the other then the dominated
individual is removed from the population. The
criteria for one individual to dominate another
requires the dominating individual to have a greater
score as well as less than or equal to the same number
of features, therefore optimizing the global set of
features for both performance and sparsity. The
tournament continues to compare random individuals
until only half of initial population remains, thus
generating a two dimensional Pareto front of
‘optimal’ feature sets. The missing spots in the
population are then filled in with a mix of new
random individuals and mutated copies of existing
individuals. A mutation defined as a feature within
the set being randomly changed, added or removed,
and therefore producing a similar but different set of
features then the original. This process as described
represents the initializing of a population and one
complete generation. Within this work I ran 50
unique populations of 100 individuals each, all for
500 generations. One last Pareto tournament is run
after the last generation yielding for each population
50 final subsets of features (2500 total) all with an
assigned score.

The large number of subsets provides both the
motivation and data behind my choice of modelling
the problem within a network. A naive approach
towards making sense of the feature sets simply says:
assign each feature a weighted score based on how
many subsets it appears in, the weighting relative to
each feature sets score i.e., a feature that appears in a
set with a high score should contribute more than a
feature that shows up only in a poorly preforming
feature set. Two additional constraints can then be
optionally applied, namely an initial score threshold
where if under a certain score a feature set will not be
considered i.e., you would not want to weight a
feature highly if it appeared in none of the best
preforming feature sets but almost all of the poorly

Figure 1: Simple example showing the weighted by score
network construction of two arbitrary sets of features,
shown separately (top right and bottom left) and merged
(bottom left).

preforming ones. Secondly, a size constraint which
divides the importance of a given feature based on the
number of other features in the set i.e., each feature in
a set of two should be weighted more highly then
features in an equally preforming set of fifty. The
most obvious flaw in this naive approach can be seen
in its inability to capture two features which might
’stand in’ for the other, regardless of their potentially
shared importance. It is with this problem of
co-variance, among other concerns, that I introduce a
network based feature importance model.
Furthermore, the concepts of weighting by score,
initial thresholding and size constraint all continue to
apply in my network definition.

Formally, I define the undirected and weighted
feature importance network to consist of a set of
nodes where each unique feature corresponds to one
node. An edge then exists between any two nodes if
they appear together in a valid feature set (optionally
as determined by passing an initial score threshold).
This is a weighted network where all edges have a
relative weight in relation to all other edges. In the
simple case where I construct a network only
weighting by score (no size constraint), an edge’s
weight between any two features is defined as the sum
of all valid feature set scores in which both keys
appear. An example with only two sets of three
features is shown in Figure 1. Within the size
constraint variant an edges weights are instead
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calculated from the feature sets score divided by the
number of features in that set. Lastly, the edge
weights in the network can optionally be normalized
by dividing each weight by the sum (or sum divided
by number of features) of all valid feature sets scores
i.e., an edge between some feature i and j with a
weight of 1 would correspond to the case where
features i and j appeared together in every valid
feature set.

I further define a projection onto the resulting
network, similar to a bipartite projection, but
primarily concerned with the previously introduced
problem of identifying features that ‘stand in’ for
other features. Within the projected network a
weighted edge is defined linking every node with the
neighbors of its neighbors. Formally, for any three
nodes X, Y and Z in the original network where edges
(X,Y) and (Y,Z) exist I define a weighted edge in the
projected network, (X,Z), as

w(X ,Z)pro j =
w(X ,Y )+w(Y,Z)

2
−w(X ,Z)

The function w() simply referring to the weight of
that edge in the original network. Figure 2 shows two
simple applied examples, where in both it can be seen
that in the resulting projection the relationship (edge
weight) between node 1 and 3 is highlighted. The
second example further shows a case where the
results edge weights between (1,2) and (2,3) are
negative after the projection, which under the
interpretation of the projected edge weights as
signifying an analog of co-variance seems reasonable.
This definition notably fails to deal with the case
where there are two or more reasonable paths, for
example a 4-cycle. In these cases there exists two
reasonable possibilities, namely taking an average for
each valid projected weight or calculating a sum. The
average case though suffers from the possibility that a
strong connection could be lost due to the presence of
a number of other weaker connections, whereas in the
summing case any strong two nodes will contribute.
Likewise, while the summing case will seemingly
inflate the edge weight between two nodes with
numerous valid paths, I would argue the presence of
these paths, even if individually weak, are
meaningful. Therefore I define the final projected
edge weights to represent the sum of all valid
projections as defined above.

An important and fairly simple trait of interest of

Figure 2: Two basic examples of projected network
weights, where the original weights are shown on the left
and the right side version shows the projected version.

our weighted network is the concept of weighted
degree. Weighted degree is defined for all nodes as
the sum of the weights of all edges containing that
node. If one were to then order nodes by weighted
degree, a parallel between our initial naive ranking
scheme and this introduced ordering arises.
Specifically, the ranking produced by the weighted
and size constraint variants of the naive ordering and
weighted degree ordering will be exactly the same,
whereas without the size constraint they will be only
similar. As a simple metric of measuring variability
between two different rank spaces I can use the
Spearman’s rank-order correlation which for the case
of distinct integer ranking between lists of ranks X
and Y is calculated as,

rs = 1− 6∑d2
i

n(n2−1)

Where, ∀i ∈ X ∩ Y,di = Xi − Yi and n is the
number of observations (Zar, 1972). While proposing
some sort of ordering might be useful towards the
goal of selecting an optimal final feature set, any
proposed ordering will be less useful towards
understanding the complexities of the feature space.

One perhaps more fruitful method of extracting an
optimal feature set for use in a classifier relates back
to my definition in constructing the feature network
itself. That is, features are essentially added as
cliques (fully connected sub-graphs) and therefore it
might be useful to identify the largest clique within
the feature network. Maximum cliques can further be
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Figure 3: Complementary cumulative distribution
function (CCDF) comparison between different network
constructions with different initial thresholds and optional
size constraint. Where * signifies that the size constraint
was applied and the number in parentheses represents the
number of valid keys after the threshold.

found under different edge weight thresholds, where
by removing edges the resulting maximum clique will
be smaller and smaller. The assumption is that these
features present within the various sized maximum
cliques might represent high preforming subsets of
features. Another potentially useful tool in
understanding the dynamics of different feature
importance graphs is to introduce a measure of
clustering. I will make use of an average clustering
coefficient across the whole graph, where I use the
geometric average of the sub graph edge weights as
my clustering coefficient defined as,

cu =
1

deg(u)deg(u)−1 ∑
vw
(w(u,v)w(u,w)w(v,w))1/3

(Onnela et al., 2005).

3 Results
I introduced a number of different parameters for
constructing different feature importance networks.
In Figure 3, I explore how different choices of initial
threshold and choice of optionally enforcing a size
constraint effect the resulting degree distribution.
When a higher threshold is enforced (.8 in the
example) far less sets of features are considered and
perhaps as a consequence the distribution remains

Threshold # Key Sets Clustering Coef.
.50 2437 .643
.60 2375 .689
.70 2049 .738
.75 1053 .775
.80 108 .816

Table 1: Average clustering coef. across different initial
thresholds.

more stable regardless of size constraint. When more
initial sets are considered, as in the case of .7, then the
size constraint has a more noticeable effect. The
general trend of the CCDF remains, i.e., you would
expect similar power law exponents, but when
applying the size constraint the resulting distribution
is shifted to the left and the exact shape certainly
differ.

Another way to quantify the different effects of
the initial network construction parameters is to
compare node rankings. I can easily rank all of the
nodes/features by weighted degree as introduced
earlier. As I do not have a ground truth top ranking of
features to consider, I will instead have to make
comparisons with the Spearman’s rank-order
correlation arbitrarily between different
configurations (note: to compare ranks with a
different number of features we can just consider the
a truncated version of the longer list). For example, a
comparison between a threshold of .7 and .8 yields a
Spearman’s coef. of .28 without size constraint and
.09 with. A comparison just changing size constraint
with a threshold of .8 yields a coef. of .587, and with
a threshold of .7 a coef. of .27. I can also consider a
larger comparison, say between a threshold of .6 and
.8, where with a size constraint the coef. is .17 and
without .01. Lastly, note that if we instead constrain
our rank comparison to the top 10 features and repeat
the .6 versus .8 analysis we find a coef. of -.32 with a
size constraint and -.42 without. These comparisons
in general seem to suggest a high volatility in node
ranking that is quite dependant on network
construction parameters. Likewise, another
potentially misleading confound is that when the
initial threshold is set lower, say .6, when compared
to .8, there are more features available and therefore
features that are ranked which might lead to less
correlation, despite list truncation.
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Figure 4: Model evaluation using the top features as
extracted from the weighted degree using explicitly the top
1-20 features. * signifies that a size constraint was applied.

I can also examine how the average clustering
changes with different initial thresholds (the size
constraint will not effect clustering) in Table 1. In
general one might expect higher clustering to be a
sign that the features in the network translate to more
directly useful features. This can be seen in a
comparison between a threshold of .8 and .5, where
when all key sets are included the resulting network is
less clustered. Though, with an initial threshold of .8,
only 108 sets of features are preserved which
certainly makes obtaining a higher clustering coef.
more likely. It unclear if this measurement is at all
meaningful in this context.

Based on the above exploration of different
feature network parameters it is still difficult to point
towards a ‘best’ representation for understanding
feature importance dynamics. One more quantitative
way, though still potentially naive, involves testing the
performance of the algorithm on the top 1-20 features
as extracted by weighted degree as seen in Figure 4.
This method of validation importantly only confirms
the utility of the parameters in selecting subsets of
high ranking features and may very well not represent
the best network settings for understanding feature
dynamics. While no clear ‘best’ network parameters
emerge just by looking at the graph a few thing stand
out, that a threshold of .75 with size constraint yields
the second best score with 14 features and that a
threshold of .75 without size constraint yields the best
score with 19 features. A threshold of .75 also has the
highest area under the curve. Therefore, for the
remainder of the analysis we will consider a feature

Figure 5: Model evaluation using the top features
as extracted from the weighted degree versus features
extracted from thresholded maximum cliques, all for an
initial threshold of .75 with no size constraint.

comparison network constructed with an initial
threshold of .75 with no size constraint.

Table 2 displays the top 10 features as determined
by weighted degree as well as the top 10 edges as
identified by weight and the top edges as identified by
the previously defined network projection. notably,
each pair of features in the projection seems to follow
the trend of having one feature previously identified
as a top feature and one previously lower ranked
feature. This trend makes sense as the way I defined
the network projection seems to overweight already
strong edges e.g., the average between 1 and .1 is still
.55.

When running a maximum clique algorithm on
this feature network a clique of size 15 is initially
found with no threshold. By progressively
introducing a threshold maximum cliques of every
smaller size can then be found. I then evaluated
performance using the subset of features found from
these progressively smaller cliques. Interestingly, the
features found from a a max clique of size 14
produces an average ROC AUC of .826 versus the
highest ROC AUC found from the previous degree
ranking, .814. A full comparison is shown in Figure
5.

4 Discussion
Given the original two goals of modelling feature
importance as a network, namely improved
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Features by degree Edges by weight Projected Edges by weight
L superiorfrontal thickavg L superiorfrontal thickavg R lateralorbitofrontal thickavg L medialorbitofrontal thickavg L superiorfrontal thickavg
R lateralorbitofrontal thickavg L superiorfrontal thickavg R transversetemporal surfavg L transversetemporal surfavg R transversetemporal surfavg
R transversetemporal surfavg R lateralorbitofrontal thickavg R transversetemporal surfavg L caudalanteriorcingulate thickavg L superiorfrontal thickavg
L put L superiorfrontalthickavg L put R caud L superiorfrontal thickavg
L precuneus surfavg L put R transversetemporal surfavg L supramarginal surfavg L superiorfrontal thickavg
L rostralmiddlefrontal thickavg L put R lateralorbitofrontal thickavg L superiorfrontalthickavg R parsopercularis surfavg
L parsopercularis thickavg L precuneus surfavg L superiorfrontal thickavg L medialorbitofrontal surfavg L superiorfrontal thickavg
L lateraloccipital surfavg L superiorfrontal thickavg L rostralmiddlefrontal thickavg R inferiorparietal surfavg L superiorfrontal thickavg
ICV L precuneus surfavg R transversetemporal surfavg R pericalcarine thickavg L superiorfrontal thickavg
R cuneus thickavg R lateralorbitofrontal thickavg L rostralmiddlefrontal thickavg L bankssts surfavg L superiorfrontal thickavg

Table 2: Top ranked features and edges under an initial threshold of .75 and no size constraint

understanding of dynamics and improved selection of
optimal features, this work provides support for both.
In particular, I was able to exploit the network
structure towards choosing more optimal features
then those found via the weighted degree ranking via
identifying progressively smaller maximum cliques.
While it is very well possible that there exist better
methods i.e., perhaps making use of measures of
centrality or clustering might help to identify a more
optimal set, it can not be inferred as a result from this
work.

Towards the initial stated goal of improving
understanding, I believe my approach was mostly
successful. The idea around the network projection as
mention I believe has the potential to be interesting,
but might require tweak to how I calculate edge
weight exactly. Future work, or rather work that does
not lend itself to figures within a paper, would include
generating interactive visualizations of the network
and the network projection. This would allow for a
more intuitive exploration of feature importance and
especially towards interpreting the network
projection.
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